Differential gene co-expression networks via Bayesian biclustering models

نویسندگان

  • Chuan Gao
  • Shiwen Zhao
  • Ian C. McDowell
  • Christopher D. Brown
  • Barbara E. Engelhardt
چکیده

Identifying latent structure in large data matrices is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are locally co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-regulated genes whose covariation may be observed in only a subset of the samples. Our biclustering method, BicMix, has desirable properties, including allowing overcomplete representations of the data, computational tractability, and jointly modeling unknown confounders and biological signals. Compared with related biclustering methods, BicMix recovers latent structure with higher precision across diverse simulation scenarios. Further, we develop a method to recover gene co-expression networks from the estimated sparse biclustering matrices. We apply BicMix to breast cancer gene expression data and recover a gene co-expression network that is differential across ER+ and ERsamples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene co-expression networks via biclustering Differential gene co-expression networks via Bayesian biclustering models

Identifying latent structure in large data matrices is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are locally co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-re...

متن کامل

Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering

Identifying latent structure in high-dimensional genomic data is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-...

متن کامل

Efficient Mining Differential Co-Expression Constant Row Bicluster in Real-Valued Gene Expression Datasets

Biclustering aims to mine a number of co-expressed genes under a set of experimental conditions in gene expression dataset. Recently, differential co-expression biclustering approach has been used to identify class-specific biclusters between two gene expression datasets. However, it cannot handle differential co-expression constant row biclusters efficiently in real-valued datasets. In this pa...

متن کامل

Clustering of Time-Course Gene Expression Data

Microarray experiments have been used to measure genes’ expression levels under different cellular conditions or along certain time course. Initial attempts to interpret these data begin with grouping genes according to similarity in their expression profiles. The widely adopted clustering techniques for gene expression data include hierarchical clustering, self-organizing maps, and K-means clu...

متن کامل

Symmetric and Asymmetric Multi-modality Biclustering Analysis for Microarray Data Matrix

Machine learning techniques offer a viable approach to cluster discovery from microarray data, which involves identifying and classifying biologically relevant groups in genes and conditions. It has been recognized that genes (whether or not they belong to the same gene group) may be co-expressed via a variety of pathways. Therefore, they can be adequately described by a diversity of coherence ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014